Exact Solutions of Completely Integrable Systems and Linear ODE's Having Elliptic Function Coefficients
نویسندگان
چکیده
We present an algorithm for finding closed form solutions in elliptic functions of completely integrable systems. First we solve the linear differential equations in spectral parameter of Hermite-Halphen type. The integrability condition of the pair of equations of HermiteHalphen type gives the large family of completely integrable systems of Lax-Novikov type. This algorithm is implemented on the basis of the computer algebra system MAPLE. Many examples, such as vector nonlinear Schödinger equation, optical cascaded equations and restricted three wave system are considered. New solutions for optical cascaded equations are presented. The algorithm for linear ODE’s with elliptic functions coefficients is generalized to 2× 2 matrix equations with elliptic coefficients.
منابع مشابه
Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملExtended Gram-type determinant, wave and rational solutions to two (3+1)-dimensional nonlinear evolution equations
New exact Grammian determinant solutions to two (3+1)-dimensional nonlinear evolution equations are derived. Extended set of sufficient conditions consisting of linear partial differential equations with variable-coefficients is presented. Moreover, a systematic analysis of linear partial differential equations is used for solving the representative linear systems. The bilinear Bäcklund transfo...
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملExact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007